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A method of e lec t r ica l  simulation is shown by which one can solve the conjunctive problem 
of t ransient  heat t ransfer  between a solid body and a surrounding s t r eam of fluid. 

In the analysis  of a laminar  s t r eam around a body there a r i ses  the problem of determining the tem- 
pera tu re  field of both the body and the fluid. Such a problem reduces  to a simultaneous solution of the 
equation of heat convection in the fluid and of heat conduction in the solid. The s teady-s ta te  solution to 
such so-cal led  conjunctive problems has been considered in [1]. 

Analytical  methods of solving a t ransient  conjunctive problem have been developed with cer tain 
simplifications,  assuming,  for example, a uniform heating of the channel wall [2] or  a small  ratio of body 
thickness to fluid layer  thickness [3]. Whenever such assumptions may lead to large e r r o r s ,  it becomes  
neces sa ry  to r e so r t  to computer -a ided  solutions, but these are  very  time consuming. 

In this ar t ic le  we will show how the problem of t ransient  heat t ransfer  between a body of a rb i t r a ry  
shape and a surrounding fluid s t ream can be solved by an e lect r ical  simulation. We propose to use for 
this purpose existing models and, specifically,  a USM-1 analog computer  [4] with some s t ructura l  modifi-  
cations. 

We consider  a laminar  flow through a thick-walled tube of rec tangular  c ross  section, the walls of 
the tube being heated by the fluid. In the approximation of the boundary- layer  theory we have the following 
equation [5]: 

O0 0~0 
- -g-  +v(y)=a  F Oy ~ (1) 

(O.~<T.<~ oe, O..< y . ~ h ,  OKx. .<d) .  

The tempera ture  of the oncoming fluid can be expressed  as 

OJ~_-o = 0o;  OJ~=o = 0 o. (2)  

The equation of heat conduction in the solid body is 

OT I O~T O~T 
(3) 

(0~<~< oo; --l.~<y.~< O; O ~  x..<d). 

The boundary conditions for the body are  

23, 

TI,=o - To; (4) 

OT 
= = ~ . = - t  = 0; (5) 

Olu-=+0 = Tly=-0; (6) 
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Fig .  1. Schemat ic  b lock  d i a g r a m  of a mode l  f o r  ana -  
lyz ing the heat  t r a n s f e r  between a sol id body and a 
l a m i n a r  s t r e a m  of fluid. 

O0 ~. OT 
- ;'F g-v  s- v (7) 

Inside the r ec tang le  [0 ~ x <- d, 0 -< y <- h] we d raw two fami l i e s  of s t r a igh t  l ines  x = izkx and y = jAy 
(i = 0, 1, 2 . . . . .  n and j = 0, 1, 2 . . . . .  m),  where  nAx = d and m a y  = h. The i n t e r s ec t i on  point  of line x 
= l a x  with line y = jAy wilt  be ca l led  a ne twork  node with coo rd ina t e s  (i, j). Replac ing  the de r iva t ives  in 
Eq. (1) by f in i t e -d i f f e rence  r a t io s  at  the ne twork  nodes,  we obtain 

( ) O0~,;& t-~v(]AY) 0~, j - -  O~_l,j = ~ O~,j+l ~- 0~, j_ l - -  20~,j . (8) 

Le t  us  examine  the mode l  shown s c h e m a t i c a l l y  in Fig .  1. Here  the tube wall  is s imula ted  by a p la in  
R C - n e t w o r k  fo r  solving Eq. (3) [6]. The node points  with coord ina t e s  i, j = 0 r e p r e s e n t  the s o l i d - f l u i d  
in te r face .  At these  points  is coupled on ano ther  ne twork  of p a s s i v e  R C - s e c t i o n s  and a un i ty -ga in  ampl i f i e r  
A. F o r  the c u r r e n t s  into each  node of  this ne twork  we can wr i te  the fol lowing Kirchhoff  equation: 

11 + / 8  = I~ + 14 + I~. (9) 

Since 

I 1 =  Y i - l d - - v i ' l  " I s =  V"i+z--  Vql " l ~ =  V*'I--V~'i-1 OVid 
R~ "' R ' R ; 1 5 = C ~  

and c u r r e n t  12 is  negl igible  on account  of the r a t h e r  high ampl i f i e r  input impedance ,  hence  Eq. (9) can be 
t r a n s f o r m e d  into 

Ot ~R-~-C- v , , j - -v~_l , j  ~ v~ , j+ l+v~, j_ l - -2v~a  �9 

A c o m p a r i s o n  of (8) and (10) shows that, when condi t ions  

v(jAy) _ ~ and a__~f n (11) 
hx R~C hy 2 RC 

a r e  sa t i s f ied ,  the p a r t  of the ne twork  in Fig .  1 above the bounda ry  points  s imu la t e s  Eqs .  (8) de sc r ib ing  the 
t h e r m a l  p r o c e s s e s  in the fluid. Voltage V L at  the output of the shaping c i r cu i t  Y is an e l e c t r i c a l  analog of 
the t e m p e r a t u r e  in the oncoming  s t r e a m  and may ,  genera l ly ,  v a r y  in t ime.  

If the p a r a m e t e r s  of the R C - n e t w o r k  which s imu la t e s  the sol id body a r e  ma tched  so as  to sa t i s fy  the 
r e l a t ion  

Rs ~FAY 

R ZsAY s ' 

fol lowing the condi t ion of t h e r m a l  flux ba l ance  at the in t e rphase  boundary  (7), then the e l e c t r i c a l  mode l  in 
Fig .  1 can be r e g a r d e d  as  a mode l  f o r  the s imul taneous  solut ion of  Eqs .  (1) and (3) with the boundary  
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Fig. 2. Isotherms for  the flow of fluid through a flat chan- 
nel: a) T = 1 h 2 0 m i n ;  b) 7 - = 2 h ;  I) v = 0 . 5 m / h ;  II) 1.5 
m/h .  

conditions (4)-(7), i .e . ,  for the solution of the t ransient  conjunctive problem. We note that one can satisfy 
condition (6) by direct ly connecting the upper and the lower network through their terminal  res i s tances  at 
points (1, 0), (2, 0) . . . . .  (i, 0). 

This model was used for analyzing the heat t r ans fe r  between water flowing through a symmet r ica l  
flat channel (2h = 0.04 m) and a solid body (d = 0 . 6 m ,  l =~ 1.1 m) with the following thermophysical  prop-  
er t ies :  p = 7900 kg /m 3, c = 0.13 J / k g .  ~ ~ = 45 W/m �9 ~ The flow velocity was assumed equal to the 
mean-d i scharge  velocity at all points. 

The model was designed around a USM-1 analog computer .  Its distinct feature is the RC-network 
for simulating the fluid s t r eam and including a uni ty-gain amplif ier .  The function of this network is to set 
the boundary conditions at the sol id-f lu id  interface.  

Although no provis ion is made in the basic eompter  for setting the boundary conditions in this man-  
ner, this component can be added to the USM-1 device without difficulty. Thus, each unity-gain amplif ier  
is made up here  of an a m p l i f i e r - s u m m a t o r  f rom a function generator  unit (FG) in ser ies  with a channel 
for generat ing boundary conditions of the f i rs t  kind (GB-1). Such a hookup yields the p roper  gain and 
great ly  simplifies the switchboard layout. Fur the rmore ,  with the amplif ier  (FG and GB-1) in a ser ies  con- 
nection it is not necessa ry  to invert  the input signal - as is required in the conventional operation of the 
model. 

In Fig. 2 a re  shown resul ts  of the proposed simulation procedure .  A few isotherms for the fluid 
s t r eam are  shown here (the tempera tures  are  indicated in relative units) for  T o = 0. 

The proposed method makes it possible to great ly  extend the use of existing models and to adapt 
them for solving conjunctive transient  heat t ransfer  problems.  

N O T A T I O N  

is the tempera ture  of the fluid; 
"r is the real  time, h; 
v is the velocity of fluid; 
h is the channel half-width; 
d is the channel length; 
l is the wall thickness; 
Vii is the voltage at the network node with coordinates i, j; 
t is the machine time; 
T is the tempera ture  of the solid body; 
n is the time scale factor;  

is the thermal  conductivity; 
c is the specific heat; 
p is the density; 
a is the thermal  diffusivity. 

S u b s c r i p t s  

F denotes fluid; 
S denotes solid; 
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